尽管传统的单层细胞培养代表了一种锻练且无为使用的体外程序,但清苦组织结构和这种模子的复杂性无法为体内的确凿生物经由提供信息。好意思国flexcell tissue train 3D动态机械力微环境三维培养构建系统的细胞培养技能的最新阐述通过创建重大的三维 (3D) 模子来轮廓原代组织的细胞异质性、结构和功能,绝对更正了生物医学盘问的体外培养器具。这些模子还弥合了传统二维 (2D) 单层培养物与动物模子之间的差距。3D 培养系统使盘问东说念主员大要在一个培养皿中重建东说念主体器官和疾病威斯尼斯人AG百家乐,因此在再生医学、药物发现、精确医学和癌症盘问以及基因抒发盘问等好多期骗中具有很大的前程。
好意思国flexcell tissue train 3D动态机械力微环境三维培养构建系统技能使您大要在几分钟内创建高度受控的3D组织培养模子。 可重现、本钱效益高且对东说念主类生物学具有高度展望性。
世联博研北京公司提供,问题010-67529703
原文网址 https://www.bio-goods.com/products_bio/fabu/SupplyItem1736218475515.html
伸开剩余96%系统先容:可在基底硬度刚度模量0.1-80kpa范围内对二维、三维细胞和组织各式培养物提供轴向和圆周应力加载。
基底微图案纳米名义,该图案具有亚微米对皆的凹槽,况兼其硬度可相通(0.1-80kpa)。 微图案有助于酿成成列的细胞单层,使它们具有结组成列和组织性,从而使细胞愈加锻练和生理地抒发。
居品锻练:文件达4000多篇,国内有150多家凯旋单元使用。
亮点:
1)该系统对二维、三维细胞和组织各式培养物提供轴向和圆周应力加载;不但具有双轴向拉伸力加载,还具备单轴向加力功能
2)意象机汗漫的应力加载系统,为体外拔擢的细胞提供j确的、可汗漫的、可类似的、静态的或者周期性的应力变化。
3)使用真空泵,抻拉培养板底部的弹性硅胶模,细胞培养板底部高伸展度可达到33%,通过气体装配不错自动相通和汗漫应力。
4)基于柔性膜基底变形、受力均匀;
5)可及时不雅察细胞、组织在应力作用下的反应;
6)具的flexstop断绝阀可使并吞块培养板力的一部分培养孔的细胞受力,一部分培养孔的细胞不受力,便捷对比践诺;
7)与压力传导仪整合,同期兼备多通说念细胞压力加载功能;
8)与Flex Flow平行板流室配套,可在牵拉细胞的同期施加流体切应力;
9)多达4通说念,可4个不同程序同期驱动,进行多个不同拉伸形变率对比践诺;
10)并吞程序中不错驱动多种频率,多种振幅和多种波形;
11)加载模拟波形种类丰富:静态波形、正旋波形、心动波形、三角波形、矩形以及各式te制波形;
12)更好地汗漫在超低或超高应力下的波形;
13)电脑系统对牵张拉伸力加载周期、大小、频率、执续期间j确智能调控
14)加载分析各式细胞在牵张拉应力刺激下的生死亡学反应
15)伸展度范围广:0-33%
16)牵拉频率范围广:0.01-5Hz
三维种子细胞构建东说念主工生物组织系统(Creating a Bioartifical Construct with the Tissue Train System)
性格:
1)对滋长在三维现象下的细胞进行静态的或者周期性的牵张拉伸刺激培养,不错进行及时不雅察分析。
2)对滋长在三维环境下的细胞进行单轴向或者双轴向的静态或者周期性的应力加载践诺
3)可缔造te制的各式模拟践诺:心率模拟践诺,步行模拟践诺,跑动模拟践诺和其他能源模拟践诺。
4)可构建长度达35mm的生物东说念主工组织
5)具有丰富的三维培养模具和多种卵白包被材料的自动细胞组织三维培养系统
6)该系统以立体水凝胶为三维培养支架, 水凝胶支架具有大批体内微环境基质的特征,水凝胶所具有的三维网罗结构、含水量高和力学性能可控等性格与体内细胞所处基质微环境同样, 被无为用于工程化组织的体外构建盘问,AG百家乐怎么稳赢水凝胶的硬度调控范围很大, 相称有益于模拟体内生理或病理力学微环境
是确凿意旨上的三维培养
适用范围
1)FLEXCELL的Tissue Train ®培养体系,是为了料理这一组织培养经由中的难题,这个培养体系通过为细胞和基质提供三维支架矩阵组织、动态的拉伸力和多种几何模子来创建不同时局的生物东说念主工组织(如线性,梯形和圆形)。
2水凝胶基质力学环境模拟
3)生物材料的细胞力学微环境体外构建系统
4)基于干细胞3D力学环境的工程化微组织构建盘问
Tissue Train ®培养系统期骗布景
体外培养在与确凿组织在结构上和功能上同样的东说念主工组织需要以下几个基本条款:
(1)细胞
(2)支架矩阵组织
(3)培养基和滋长因子和(4)机械刺激。这些条款相互互相影响,况兼互相之间共同来促进酿成大要承受生物机械力的,且结构相比融会的组织。而在东说念主工组成酿成的经由中,这些细胞按照发育阶梯酿成具有一定几何时局的细胞外基质结构。其中一些信号转导阶梯参与了细胞外基质组合物的酿成。这些阶梯中,有些是由细胞基质的机械变形相通,并通过膜联结卵白,如整合素,粘着斑复合体,细胞粘附分子和离子通说念传递到细胞内。这些阶梯中细胞还不错反应配体,如细胞基质形变所开释的细胞因子,激素或滋长因子等。
为了看护肌肉骨骼组织的完好性和强度,组织内细胞需要保执一定水平的的内在应力。若是清苦这种内在的应力,组织会穷乏强度导致细胞结构的糟蹋或者组织的断裂。现在一般合计若是在固定算作,卧床休息或在内在应力水平的缩短的情况下,将导致骨中矿物资流失,骨组织萎缩,骨骼弱化,以及合成代谢活性的缩短和剖析代谢活性的增多。
为了在体外培养与原生组织类似的东说念主工组织,清苦的即是大要创建模拟体内条款的环境。细胞在具有机械畅通作用的的环境中培养,不错促进细胞的推陈出新,并不错更正细胞的时局和其它性能。因此,在体外酿成经由中缔造和保执一个具备机械作用的环境(即张力,剪切力或压缩)就成为这还是由中至关清苦的。除了具备机械作用的环境,在三维环境下培养细胞不错比静态二维培养法更好地模拟原生环境。
典型期骗文件摘选:
1. Abraham T, Kayra D, McManus B, Scott A. Quantitative assessment of forward and backward second harmonic three dimensional images of collagen type I matrix remodeling in a stimulated cellular environment. J Struct Biol 180(1):17-25, 2012.
2. Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J Tissue Eng Regen Med 2(8):521-524, 2008.
3. Allison DA, Wight TN, Ripp NJ, Braun KR, Grande-Allen KJ. Endogenous overexpression of hyaluronan synthases within dynamically cultured collagen gels: implications for vascular and valvular disease. Biomaterials 29:2969-2976, 2008.
4. Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper L, Shepard J, Weiss M, Shea LD, Penzes P, Ravosa MJ, Stack MS. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein. J Biol Chem 288(1):141-51, 2013.
5. Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A, Mayer M, Quijano-Roy S, Desguerre I, Lainé J, Ben Yaou R, Bonne G, Coirault C. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127(Pt 13):2873-84, 2014.
6. Cao TV, Hicks MR, Campbell D, Standley PR. Dosed myofascial release in three-dimensional bioengineered tendons: effects on human fibroblast hyperplasia, hypertrophy, and cytokine secretion. J Manipulative Physiol Ther 36(8):513-21, 2013.
7. Cao TV, Hicks MR, Zein-Hammoud M, Standley PR. Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72-82, 2015.
8. Charoenpanich A, Wall ME, Tucker CJ, Andrews DM, Lalush DS, Loboa EG. Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng Part A 17(21-22):2615-2627, 2011.
9. Clause KC, Tinney JP, Liu LJ, Gharaibeh B, Huard J, Kirk JA, Shroff SG, Fujimoto KL, Wagner WR, Ralphe JC, Keller BB, Tobita K. A three-dimensional gel bioreactor for assessment of cardiomyocyte induction in skeletal muscle-derived stem cells. Tissue Eng Part C Methods 16(3):375-385, 2010.
10. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Engineering Part A 15(6):1373-1380, 2009.
11. Clause KC, Tinney JP, Liu JL, Keller BB, Huard J, Tobita K. p38MAP-kinase regulates cardiomyocyte proliferation and contractile properties of engineered early embryonic cardiac tissue [abstract]. Weinstein Cardiovascular Development Research Conference, Indianapolis, IN, 2007.
12. Clause KC, Tinney JP, Liu JL, Gharaibeh B, Fujimoto LK, Wagner WR, Ralphe JC, Keller BB, Huard J, Tobita K. Functioning engineered cardiac tissue from skeletal muscle derived stem cells [abstract]. 4th Annual Symposium of AHA Council on Basic Cardiovascular Sciences, Keystone CO, 2007.
13. de Jonge N, Foolen J, Brugmans MC, S?ntjens SH, Baaijens FP, Bouten CV. Degree of scaffold degradation influences collagen (re)orientation in engineered tissues. Tissue Eng Part A 20(11-12):1747-57, 2014.
14. de Lange WJ, Grimes AC, Hegge LF, Ralphe JC. Ablation of cardiac myosin-binding protein-C accelerates contractile kinetics in engineered cardiac tissue. J Gen Physiol 141(1):73-84, 2013.
15. Ferdous Z, Lazaro LD, Iozzo RV, H??k M, Grande-Allen KJ. Influence of cyclic strain and decorin deficiency on 3D cellularized collagen matrices. Biomaterials 29(18):2740-2748, 2008.
16. Freeman SA, Christian S, Austin P, Iu I, Graves ML, Huang L, Tang S, Coombs D, Gold MR, Roskelley CD. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci 130(1):152-163, 2017.
17. Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967-979, 2003.
18. Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481-490, 2006.
19. Huang G, Wang L, Wang S, Han Y, Wu J, Zhang Q, Xu F, Lu TJ. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Biofabrication 4(4):042001, 2012.
20. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor-? and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079, 2009.
21. Jones ER, Jones GC, Legerlotz K, Riley GP. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ. Biochim Biophys Acta 1833(12):2596-2607, 2013.
22. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-1270, 2005.
23. Masumoto H, Nakane T, Tinney JP, Yuan F威斯尼斯人AG百家乐, Ye F, Kowalski WJ, Minakata K, Sakata R, Yamashita JK, Keller BB. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep 6:29933, 2016.
24. Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F, El-Baz A, Sethu P, Keller BB, Giridharan GA. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 87(4):2107-13, 2015.
25. Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 81(3):523-530, 2007.
26. Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 30(1):80-89, 2010.
27. Peters AS, Brunner G, Krieg T, Eckes B. Cyclic mechanical strain induces TGFβ1-signalling in dermal fibroblasts embedded in a 3D collagen lattice. Arch Dermatol Res 307(2):191-7, 2015.
28. Qi J, Chi L, Bynum D, Banes AJ. Gap junctions in IL-1β-mediated cell survival response to strain. J Appl Physiol 110(5):1425-1431, 2011.
29. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.
30. Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes AJ. Interleukin-1? increases elasticity of human bioartificial tendons. Tissue Eng 12(10):2913-2925, 2006.
31. Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D, Guilak F, Banes AJ. IL-1??decreases the elastic modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.
32. Qi J, Chi L, Wang J, Sumanasinghe R, Wall M, Tsuzaki M, Banes AJ. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-?B pathways dependent. Exp Cell Res 315(11):1990-2000, 2009.
33. Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater 11:82-91, 2012.
34. Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, Kishnani PS, Thomson JA, Mosher DF, Ralphe JC, Kamp TJ. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 290(5):3121-36, 2015.
35. Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33(7):2148-57, 2015.
36. Schmidt JB, Chen K, Tranquillo RT. Effects of intermittent and incremental cyclic stretch on ERK signaling and collagen production in engineered tissue. Cellular and Molecular Bioengineering 1-10, 2015.
37. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459-3465, 2006.
38. Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord 10:27, 2009.
39. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep 4:6614, 2014.
40. Tchao J, Kim JJ, Lin B, Salama G, Lo CW, Yang L, Tobita K. Engineered human muscle tissue from skeletal muscle derived stem cells and induced pluripotent stem cell derived cardiac cells. Int J Tissue Eng. 2013:198762, 2013.
41. Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291(4):H1829-37, 2006.
42. Tondon A, Haase C, Kaunas R. Mechanical stretch assays in cell culture systems. In: Handbook of Imaging in Biological Mechanics, ed. Neu CP, Genin GM. CRC Press: Boca Raton, 2015.
43. Triantafillopoulos IK, Banes AJ, Bowman KF Jr, Maloney M, Garrett WE Jr, Karas SG. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons. Am J Sports Med 32(4):934-943, 2004.
44. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59, 2011.
45. Weinbaum JS, Schmidt JB, Tranquillo RT. Combating adaptation to cyclic stretching by prolonging activation of extracellular signal-regulated kinase. Cellular and Molecular Bioengineering 6(3):279-286, 2013.
46. Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW. TGF-?1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439-1443, 2010.
47. Yang G, Rothrauff BB, Lin H, Gottardi R, Alexander PG, Tuan RS. Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34(37):9295-306, 2013.
48. Yang Y, Wimpenny I, Wang RK. Application of polarization-sensitive OCT and Doppler OCT in tissue engineering. In: Optical Techniques in Regnerative Medicine, edited by Morgan SP, Rose F, Matcher SJ. Taylor & Francis Group: Florida, p. 307-327, 2014.
49. Ye F, Yuan F, Li X, Cooper N, Tinney JP, Keller BB. Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases. Physiol Rep 1(5):e00078, 2013.
发布于:北京市